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A formalism is developed for resonant and nonresonant spectral and spatial energy transfer of excitons in
disordered semiconductor multiple-quantum-dot structures. Dipole-dipole and photon-exchange energy-
transfer mechanisms are considered. For nonresonant transfer, we study two-site transfer rates in a disordered
system as a function of the energy mismatch, the temperature, and the distance. The total time-dependent decay
rate of the initial spectral intensity excited at a given energy in the inhomogeneous spectral profile is calcu-
lated. For resonant transfer, two-site transfer rates are studied as a function of the distance. The diffusion
constant is calculated exactly in a regular quantum dot lattice in order to assess the upper limit of the diffusion
constant of a disordered system. We find that the total time-dependent spectral decay rate and the diffusion
constant are dominated by the weak long-range photon-exchange interaction mechanism over the standard
short-range Förster �dipole-dipole� mechanism in a uniform macroscopic multi-quantum-dot system due to the
long mean-free path of the photons.
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I. INTRODUCTION

Study of the transfer dynamics of excitons between con-
fined systems in semiconductors becomes increasingly im-
portant in modern optoelectronic structures such as light
emitting diodes �LEDs� and solid-state lighting devices. In
these nanostructures, light energy is stored in excitons which
can move between two-dimensional �2D� quantum wells
�QWs�, one-dimensional �1D� quantum wires, or quantum
dots �QDs� as well as between confined structures with dif-
ferent dimensions. The physics of exciton transfer between
these confined structures is not yet fully studied and is of
much practical and academic interest. While exciton transfer
between 2D QWs and 1D wires have been studied in the past
experimentally1–3 and theoretically,1,4–6 exciton transfer be-
tween QDs is attracting attention only recently. In this paper,
we present a formalism for spectral and spatial energy trans-
fers of excitons in semiconductor multi-quantum-dot sys-
tems.

Previous data1,2 indicate that the exciton transfer rate be-
tween distant 2D QWs decays slowly with the distance be-
tween the QWs, persisting over a surprisingly long distance,
over many tens of nanometers. This intriguing behavior
could not be explained1,2,4 by the standard Förster7 �i.e.,
dipole-dipole� transfer mechanism which decays rapidly as
�1 /d4, where d is the center-to-center distance between the
QWs. This behavior was explained recently by the author by
showing that while the Förster mechanism dominates the rate
at a very short distance ��10 nm�, the photon-exchange
coupling prevails at a longer distance.4 This result arises
from the fact that the photon-exchange coupling decays
slowly with distance and that photons can reach a wide area
in the target �i.e., final state� QW, enhancing the efficiency.
In the 1D-1D transfer problem, however, the target quantum
wire has a small effective cross section due to the narrow
dimension in the direction perpendicular to the plane

containing both wires, resulting in a poor efficiency for the
long-range photon-exchange mechanism in contrast to the
2D-2D case and in agreement with the recent observed data.3

However, the photon-exchange transfer becomes important
in a system consisting of stacks of quantum wires or arrays
distributed over a wide range.6 The importance of photon-
mediated energy transfer was recognized early for Frankel
excitons in optically active ions in insulators.8

Quantum dots are useful for LEDs and solid-state-lighting
applications because of their high oscillator strengths arising
from the proximity of an electron and a hole narrowly con-
fined inside a QD. Also, localization of excitons in QDs
makes it more efficient to emit light than in QWs, where
excitons can be mobile. In a system with many QDs, it can
take a long time for excitons to diffuse out to the surface and
emit light. In this paper, we calculate the resonant and non-
resonant interdot energy-transfer rates and show that the
photon-exchange mechanism is much more efficient than the
Förster mechanism for spectral transfer and spatial diffusion
of excitons over a large distance through uniformly distrib-
uted QDs owing to �1� the long-range ��1 /r2� nature of the
photon-exchange transfer rate and �2� the long mean-free
paths of the photons.

The organization of the paper is as follows. In Sec. II, we
present a basic formalism describing the QD exciton states.
The dipole-dipole coupling and photon-exchange interaction
mechanisms are described. Their coupling strengths are com-
pared as a function of the distance between the two QDs
involved. In Sec. III, resonant and nonresonant transition
rates are studied using an elegant diagrammatic technique.
Diffusion in a regular QD lattice through incoherent resonant
transitions is investigated. Interaction of excitons with acous-
tic phonons is described. An intuitive perturbation treatment
for the phonon-assisted transfer rate is given in a disordered
system. Comparisons are made for the diffusion constants
and the total spectral transfer rates arising from dipolar and
photon-exchange interactions. A brief summary and conclud-
ing remarks are given in Sec. IV.
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II. BASIC FORMALISM

The exciton wave function in the jth QD is given by4,9

�j� = vo �
re,rh

Fj�re − r j,rh − r j�ac,re

† av,rh
�0� , �1�

where vo is the unit-cell volume, �0� signifies the “vacuum”
state with an empty conduction band �c� and a filled valence
band �v�, and r j is the position vector of the center of the
QD. The normalized envelope function Fj represents an ex-
citon state of interest and depends on the depths and the
shape of the QD. While Fj can be any state inside the jth
QD, we will be mainly interested in the ground state for
applications. The creation and destruction operators ac,re

† and
ac,re

�av,rh

† and av,rh
� create and destroy an electron in the

conduction �valence� band at the position re�rh� in the Wan-
nier representation. Employing

�
r�

→
1

vo
� d3r�, � = e,h , �2�

and neglecting the overlap between �j� and �j��, we find
�j� � j�=� j,j�.

A. Dipolar interaction

The dipolar coupling is given by4,9

Jj,j� =
Cjj�

dip

rjj�
3 D̃jj�, D̃jj� = �D̂ j · D̂ j� − 3�r̂ j j� · D̂ j��r̂ j j� · D̂ j��	 ,

�3�

where r j j�=r j −r j� ,rjj�= �r j j�� , r̂ j j�=r j j� /rjj�, eD j is the transi-

tion dipole moment, Dj = �D j� , D̂ j =D j /Dj, and

Cjj�
dip =

e2DjDj�F jF j�
�

�
. �4�

Here, � is the bulk dielectric constant and F j equals Fj�0�,
where Fj�k� is given by

Fj�k� 
 � e−ik·rFj�r,r�d3r . �5�

The angular average of D̃jj�
2 with respect to all possible di-

rections of r j j� is given by

�dip = �D̃jj�
2 �av:��

dip =
4

5
for D j � D j�,

��
dip =

9�

32
for D j � D j�. �6�

B. Photon-exchange interaction

The exciton-photon coupling part of the Hamiltonian H at
jth QD is given for emission by4

�j0,N�k + 1�H�j,N�k� =
eEg

	c
�2�c2	�N�k + 1�


���k
1/2

eik·rjê�k · D j
�Fj�k� , �7�

and for absorption �j ,N�k�H�j0 ,N�k+1� by the complex con-
jugate of this expression. Here, �j0� denotes the ground state
�0� at jth QD, N�k is the equilibrium occupation number of
the photon of mode � and wave vector k, and ê�k is the
polarization vector. The quantity Eg is the gap energy, 
 is
the sample volume, 	��k is the photon energy, c is the speed
of light, and �=n2, where n is the refractive index. A rela-
tively small confinement plus binding energy is included in
Eg.

Approximating Fj�k��Fj�0�
F j in view of �k ·r��1 for
nanoscale QDs and using ���ê�k ·D j�2=Dj

2 sin2 � where � is
the angle between k and D j, the exciton radiative lifetime is
given by

1

� jR
=

4e2kg
3Dj

2F j
2

3�	
, �8�

where kg=Eg / �	c̃� is the wave number of the gap-energy
photon and c̃=c /n. In this paper, numerical applications are
made, for example, for InxGa1−xAs /AlyGa1−yAs QDs with
small In concentration �x�1�.10 Taking Eg�1.52 eV,D
=5.5 Å,n=3.68 relevant to GaAs,11 we estimate 1 /�R
=1.48F j

2109 s−1. The above value of Eg ignores the QD-
size-dependent confinement and the many-body energy
��Eg� for simplicity and underestimates the rate � jR

−1 some-
what.

An exciton in the jth QD in a state with energy �=� j
relative to the vacuum-state energy can transfer to another
state in the j�th QD through photon-exchange interaction via
the following two-step perturbation processes:

Tj,j� = �
�,k

�j�,N�k�He-pht�j0�,N�k + 1��j0,N�k + 1�He-pht�j,N�k�
� − 	��k − i� j

,

�9�

where � j��� is the level damping. In Eq. �9�, a photon of
wave vector k and mode � is emitted in the jth QD in the
first step. In the next final step, the same photon is absorbed
in the j�th QD. Using Eq. �7�, we find

Tj,j� =
2�e2Eg

2Dj�Dj
�


�
�
k

Pjj��k�eik·rj j�Fj�k�Fj��k��

�k�� − �k − i� j�
,

�10�

where

Pjj��k� = �
�

�ê�k · D̂ j���ê�k · D̂ j
�� , �11�

and �k=	��k. The main contribution to the k summation
arises from �k��. Since �k�R�1, where R is radius of the
QD, we can replace Fj�k�=F j in Eq. �10�. Omitting the sub-
scripts j j�, the quantity P�k�= Pjj��k� is given by4
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P��k� =
k�

2

k2 for D j � D j�, �12�

where k� is the component perpendicular to D j and

P��k� = −
�k · D̂ j��k · D̂ j��

k2 for D j � D j�. �13�

In the following, we consider two simple cases for Tj,j�.

1. Dj ¸Dj�

It is convenient to carry out the k integration first using
r j j� as the polar axis, while keeping the angle � between r j j�
and D j constant. The angular average over � over the random
direction r j j� will be carried out later. Defining �
1 /kg ,x

krjj� ,a
�rjj� /	c̃�rjj� /� ,�
� jrjj� /	c̃, and

�0 = 1 + cos2 � , �2 = 3 cos2 � − 1, �14�

we find after a lengthy algebra

Tj,j� =
Cjj�

pht

rjj�
I�rjj�� ,

I�rjj�� =
1

�
�

−�

� F�x�dx

a − x − i�


 R�rjj�� + iI�rjj�� , �15�

where

Cjj�
pht =

e2Eg
2Dj�Dj

�F j�
� F j

2	2c2 =
3	

8kg�� jR� j�R

, �16�

and

F�x� = f1�x� + f2�x� ,

f1�x� = �0 sin x ,

f2�x� = − �2�sin x + 2 cos x/x − 2 sin x/x2	 . �17�

The quantity �I�rjj��� is of the order of unity for all a and
�Tj,j�� decays as � /rjj� as a function of the distance between
the dots in view of using kg=1 /�. Thus, the quantity � serves
as the length scale for the photon-exchange interaction. For
GaAs, we estimate ��1 for rjj��1 cm, �=353 Å, and
a�rjj� / �353 Å�. The quantity a becomes large for
rjj����353 Å.

In the following, we study I�rjj��. We find

I�rjj�� = F�a�, R�rjj�� 
 R1 + R2,

Ri =
1

�
P�

0

� f i�x�dx

a − x
, i = 1,2, �18�

where P signifies the principal part. The quantity R1 can be
rewritten as

R1 = −
�0

�
�cos a�� + si�a�	 − sin aCi�a�� , �19�

where

Si�a� = �
0

a sin t

t
dt,− si�a� = �

a

� sin t

t
dt,− Ci�a� = �

a

� cos t

t
dt .

�20�

The quantity R2 is given by

R2 =
1

�
�

0

a � f2�t�
a − t

−
f2�a + t�

t
dt −

1

�
�

a

� f2�a + t�
t

dt .

�21�

The imaginary part equals

I = F�a� = �0 sin a + f2�a� . �22�

The quantities �R1�, �R2�, and �I��1 are of the order of
unity for all a. In the limit a�1 for large rjj���, we find
R1=−�0 cos a, R2=�2 cos a, and R= ��2−�0�cos a in
view of Si�a�=� /2,si�a�=0,Ci�a�=0. In this limit, we also
find I�rjj��= ��0−�2�sin a. This asymptotic regime is the
regime of main interest of this paper, where photon-exchange
interaction dominates over dipolar interaction.

The total transfer rate is determined by the directional
average on � of

��Tj�,j�2� =
�Cjj�

pht�2

rjj�
2 �pht, �pht = ��I�rjj���

2� . �23�

Using

��0
2� =

19

8
, ��2

2� =
11

8
, ��0�2� =

9

8
, �24�

we find for large rjj��� and for the case D j �D j�

��
pht =

3

2
. �25�

In the opposite limit rjj���, we find directly from Eq. �15�
��

pht=19 /8.

2. Dj�Dj�

The results in Eqs. �15�–�23� still hold in this case except
that �0 ,�2 should be replaced by

�̃0 = cos �1 cos �2, �̃2 = 3 cos �1 cos �2, �26�

where �1��2� is the polar angle between D j�D j�� and r j j�.
Taking angular averages again

��̃0
2� = 1/4, ��̃2

2� = 9/4, ��̃0�̃2� = 3/4, �27�

�R2�=cos2 a���2−�0�2�, and �I�rjj��
2�=sin2 a���2−�0�2�,

we find

��
pht = 1 �28�

for large rjj���. At a short distance rjj���, we find
��

pht=1 /4.
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C. Comparison of dipolar and photon-exchange interactions

Combining the results of Secs. II A and II B and assuming
that all the relevant physical parameters are site independent,
the effective strengths of dipolar and photon-exchange inter-
actions as a function of the distance r=rjj� equal

Jeff�r� = ��Jjj�
2 � =

3�

4�

	��dip

�R
��

r
�3

,

Teff�r� = ���Tjj��
2� =

3

8

	��pht

�R

�

r
, �29�

with the ratio given by

Teff�r�
Jeff�r�

= ��� �

2�
��rjj�/��2, �30�

where �=�pht /�dip is of the order of unity. It is seen
that the ratio becomes much larger than unity for
a=rjj� /���2� / ������1, namely, when the distance is
much larger than �. The interaction strengths become
nearly equal at rjj�=� and are of the magnitude �3	 /8�R
�2.510−4 meV for �R=110−9 s. Thomas et al.12 ob-
tained a similar result by solving Maxwell’s equation with
two identical QDs interacting through the electromagnetic
field. This agreement is natural since Coulomb interaction
originates from photon exchange.

For the GaAs parameters ��12.9, ��13.5, and
�=353 Å, the photon-exchange interaction takes over
at a long distance rjj��510 Å, as shown in Fig. 1 for
�pht=�dip=1 on the left axis. It is clear that the photon-
exchange interaction is important for macroscopic multiple
QD systems where the exciton diffusion occurs over a large
length scale. It will be shown later that the long-range nature
of the radiative interaction makes it dominate over the dipo-
lar interaction for spectral and spatial diffusion for a macro-
scopic sample.

III. ENERGY-TRANSFER RATE

The 2D-2D and 1D-1D transfer rate of excitons between
two QWs was developed earlier using a rigorous field-
theoretic method in terms of Feynman diagrams.4,6 An exten-
sion to the current zero-dimensional–zero-dimensional �0D-
0D� transfer is readily carried out. The main transition rate of
an exciton from a state �j� in the jth QD to a state �j�� in the
empty j�th QD is given by the bubble diagram4 shown in
Fig. 2�a�,

Wj→j� 
 Wjj� =
2�

	
Heff�r�2�

−�

�

e−���−�j�� j���� j����d� ,

�31�

where �=1 /kBT ,T is the temperature, � j��� is the spectral
density at the jth QD, r=rjj� ,Heff�r�2= ��H j,j��

2�, and H j,j�
stands for Jj,j� as well as Tj,j�. The quantity Heff�r� equals
Jeff�r� or Teff�r� defined in Eq. �29�. In Fig. 2, the solid lines
are dressed exciton propagators in the Fermion representa-
tion, the curvy line is a phonon propagator, the solid dots

signify exciton-phonon interaction, and the external vertices
with short incoming and outgoing arrows represent dipolar
or photon-exchange transition matrix.4 The quantity � j��� is
the imaginary part of the propagator for �j� slightly below the
real axis and will be studied below. These diagrams are
evaluated with a standard diagrammatic technique.13,14 The
chemical potential � j in Eq. �31� enters only the initial site j
and is determined by exp�−�� j�=� j�exp�−�� j�� summed
over all intra-QD exciton states �j�� of the jth QD including

FIG. 1. Comparison of the effective strengths of the dipole-
dipole coupling Jeff�r� �thick solid curve� and the photon-exchange
coupling Teff�r� �thick dashed curve� in Eq. �29� in units of 	�R

−1 for
�pht=�dip=1 as a function of the dot-to-dot distance �left axis�. The
resonant transfer rates in Eq. �36� are displayed on the right axis for
�G=�R at zero temperature in units of �R

−1 for dipolar transfer Wdip
res

�thin solid curve� and photon-exchange transfer Wpht
res �thin dashed

curve�. The rates are reduced by the factor �G /�R�1 at higher
temperatures. Other parameters are given in the text.

|j>

Tjj’

Tjj’

|j’>

(a)

qqqq
|j>

|j>

Tjj’

Tjj’

|j’>

|j’>

(b)

FIG. 2. A bubble �a� and one-rung �b� diagram for the exciton
transfer rate. The solid lines indicate exciton propagators in the
Fermion representation �Ref. 4� and the curvy line a phonon propa-
gator with a wave vector q. The black dots denote exciton-phonon
vertices. The arrows indicate the direction of the energy flow.
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the ground level. If there is just one excited level �j�� with
the energy � j

�=� j +� near the ground level � j, then we have
exp�−��� j −� j�	=1 / �1+exp�−���	.

In this paper, we assume that the low-lying intradot levels
are discrete and do not overlap. In this case, the spectral
density around a single level � j is given by

� j��� =
1

�

� j���
�� − � j�2 + � j���2 . �32�

When the excited states � j� are far away from the ground
level � j �i.e., � j� −� j�kBT�, we find � j =� j. The expression in
Eq. �31� is the microscopic version of the so-called spectral
overlap theory,7,15 with an important explicit energy-
dependence for the damping parameter � j��� to be studied
later. The real part of the self-energy �i.e., the spectral shift�
is absorbed into � j. A more intuitive perturbation theory to be
discussed later gives additional important contribution corre-
sponding to the rate arising from the one-rung diagram
shown in Fig. 2�b� as well as the bubble contribution.4 How-
ever, the one-rung diagram does not contribute to the rate in
the limit rjj� is much larger than the QD size as will be
shown later. This large rjj� regime is relevant to photon-
exchange energy transfer.

When the two levels are nearly resonant �� j j���� j j� and
� j��� ,� j���� are small and slowly varying function of � in
this energy range, we find

Wjj� =
2�

	
Heff�r�2e−���j−�j�� j j��� j j�� , �33�

where � j j�=� j −� j�,

� j j��� j j�� =
1

�

� j j�

� j j�
2 + � j j�

2 , �34�

� j j�=� j�� j��+� j��� j�. At very low temperatures kBT��,
� j��� arises mainly from radiative damping �R=	 /2�R. An
additional contribution,

� j��� = � �
j�,�,q

��j�,nq � 1�He-ph
j �j,nq��2��� − � j� � 	�q� ,

�35�

arises from phonon-assisted damping at higher temperatures.
The latter can become large at high temperatures and energy
dependent, making the above result less accurate. In Eq.
�35�, �j�� ,He-ph

j , and nq indicate, respectively, the excited lev-
els �including �j�� inside the jth QD, exciton-phonon interac-
tion to be introduced later �with a more explicit form for
� j���	, and the occupation number of the phonon with a
wave vector q and energy 	�q. The upper �lower� sign cor-
responds to the transition to �j�� via one-phonon emission
�absorption� from �j�. For the case of resonance � j j�=0, Eq.
�33� is rewritten as

Wjj�
res = e−���j−�j�� 2Heff�r�

	
�2

� j,j�

= e−���j−�j�� 2Heff�r�� j,j�

	
�2

� j,j�
−1 , �36�

where � j,j�=	 / �2� j j���	 / �4� j�� j�	 is the phase coherence
time for resonance between the two QDs. The expression
after the second equality in Eq. �36� illustrates the physical
meaning of the result by stating that the resonance transfer
rate equals the total transition probability during the coher-
ence time � j,j� divided by � j,j�. Defining the life time �G of
the exciton ground state by �G

−1=2� j�� j� /	=� j,j�
−1 /2, the reso-

nant transfer rate equals Wjj�
res =2�R

−1��G /�R��Heff�r��R /	�2 for
the case � j =� j where only the ground state is relevant. The
quantity �G

−1 arises from the radiative damping as well as
intradot phonon-assisted transitions. Figure 1 displays Wjj�

res in
units of �R

−1 on the right axis as a function of the QD-QD
separation at zero temperature, where �G=�R. This rate is
reduced by �G /�R at high temperatures where intradot “ver-
tical” phonon-assisted transitions dominates �G

−1.
When the two levels are off resonant i, e, �� j j���� j j� and

� j��� and � j���� are slowly varying function of � near � j and
� j�, Eq. �31� yields

Wjj� =
2�

	
 �Heff�r��2�e−���j�−�j�� j�� j�� + e−���j−�j�� j��� j�	 ,

�37�

where the two terms arise from the two distinct poles at
�=� j ,� j� and  =1. It will be shown later that a significant
phonon-assisted energy-transfer rate exists only between two
QDs with a small energy mismatch �� a few meV� and
therefore the two poles overlap significantly within the en-
ergy scale of damping. In this case, the two terms in Eq. �37�
amount to double counting of the contributions of each pole.
A later full numerical calculation demonstrates that roughly
 �1 /2 as expected. In the rest of this paper, we consider
only the simple case � j =� j, assuming that all excited levels
are outside the thermal reach of �j�. We will also consider
energy transfer only between the ground-state exciton levels
hereafter for simplicity since our treatment can be readily
extended to more complex situations. Equation �35� then
yields

� j��� = ��
�,q

��j,nq � 1�He-ph
j �j,nq��2��� − � j � 	�q� .

�38�

Using this expression and detailed balance for the first term
in Eq. �37�, this equation can be rewritten as

Wjj� =
2

	
 �Heff�r��2� � j�� j + � j j��

� j j�
2 + � j�� j��

2
+

� j��� j�

� j j�
2 + � j��� j�2 ,

�39�

The quantity Wjj� arises from two-step phonon-assisted
transfer processes between the dots as will be shown later.
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A. Diffusion of excitons on a QD lattice

Here, we compute the diffusion coefficient of the excitons
making random walks between QDs on a regular cubic QD
lattice through dipolar and photon-exchange interactions, as-
suming a resonant transfer rate with the properties: � j
=� j� ,Wj�j =Wjj�=W�r j�−r j�. We assume a single ground-
state level for each dot. We start from the standard master
equation,

dPj�t�
dt

= �
j�

Wjj��Pj��t� − Pj�t�� = �
j�

Wjj�Pj��t� − WTPj�t� ,

�40�

where Pj�t� is the occupation probability of the jth QD at
time t, WT=� j�Wjj� is the total scattering-out rate indepen-
dent of j, Wjj =W�0�
0 and Pj�0�=� j,0, namely, the exciton
is initially at j=0. Defining N as the number of the QD sites
in the lattice and expanding

Wjj� =
1

N
�
k

exp�k · �r j� − r j�	Wk,Pj� =
1

N
�
k

exp�− k · r j��Pk,

�41�

and rewriting Eq. �40� as dPk /dt=WkPk−W0Pk, we obtain
Pk�t�=exp��Wk−W0�t	, where WT=Wk=0. Therefore, we
find16

Pj�t� =
1

N
�
k

exp�− ik · r j�exp��Wk − W0�t	 , �42�

where

Wk = �
j

exp�ik · r j�W�r j� . �43�

The long-time behavior for t→� arises from the k�0 re-
gion,

Wk = W0 − Dk2 + O�k4� , �44�

which, inserted in Eq. �42�, yields a well-known result,

Pj�t� = � b

2��Dt
�3

exp�−
rj

2

4Dt� . �45�

Here, D is the diffusion constant and b is the lattice constant.
We now compute D for the rate of the form

W0,j = W�r� =
Ane−r/�n

rn , �46�

where n=2,6, and �6=�. The quantity �2�b is the energy-
dependent photon mean-free path. The coefficients An are
obtained from Eqs. �29� and �36� for resonant transfer

A2 = 4� j,j��Teff�r�r
	

�2

,

A6 = 4� j,j�� Jeff�r�r3

	
�2

=
�2

���2�

�
�A2. �47�

These quantities are independent of the site indices j , j� for a
quantum dot lattice. Defining �QD as the number of QDs per

volume and using Eqs. �43� and �44�, we find

Dn =
2�

3
�QDAn�

rmin

� e−r/�n

rn−4 dr , �48�

obtaining

D2 =
4�

3
�QDA2�2

3, D6 =
2��QDA6

3rmin
. �49�

Here, the minimum distance is rmin�a. The ratio equals

D2

D6
=

2A2rmin�2
3

A6
=
�

2
��
�
�2

rmin�2
3kg

4. �50�

For GaAs QDs, estimate

D2

D6
� 2.92�

rmin

102 Å
� �2

103 Å
�3

.

For the minimum QD separation of rmin=300 Å, this ratio
becomes D2 /D6=� for �2=485 Å and becomes drastically
larger for a larger �2. A numerical estimate to be presented
later shows �2�5.1103 Å for resonant transfer at low
temperatures, yielding D2 /D6�1. In order to evaluate D2 in
Eq. �49�, we assume a purely radiative damping that yields
� j j�=�R /2 for Eq. �47� at low temperatures and employ Eq.
�67� for �2 to be introduced later. We then find D2
=3�pht�2

2 /4�R in view of Eqs. �29� and �47� as expected from
a scaling argument. The underlying physics states that long-
range slow jumps via photon-exchange transfer dominates
over the short-range fast dipolar jumps for the random walk
of the excitons over the dots in diffusing over a long distance
out to the sample surface.

The result in Eq. �48� has a simple qualitative interpreta-
tion in terms of a random walk on a lattice. The diffusion
constants for a random walk with a unit step length r and a
concomitant rate Wn�r� is given by

Dn � �
r

Wn�r�r2 = 4��QD�
rmin

�n An

rn−4dr , �51�

indicating that long- �short-� range transfer dominates the
diffusion constant for n=2�n=6�.

The results in Eqs. �48� and �51� clearly show that many
QDs contribute to the diffusion constant through long-range
transfer for the photon-exchange mechanism. Therefore, spa-
tial disorder of the QDs and energy-level disorder are not
expected to alter the diffusion constant drastically because
excitons can always find resonant sites through the long-
range transfer. More specifically, the long-range radial de-
pendence of the photon-exchange transfer rate �r−2 allows
the exciton in question to find a resonant site without fail
even in a disordered system at a long distance within a vol-
ume shell dr with a probability r2dr which overcomes the
�r−2 decay of the transfer rate. In contrast, for the short-
range dipolar transfer rate �r−6, the dot-to-dot transfer rate
depends sensitively on the energy mismatch and the distance
between two nearest neighbors. As a result, slowest links
dominate the diffusion process for dipolar transfer and the
diffusion constant D6 in Eq. �49� is an overestimate for a
disordered system.
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B. Phonon-assisted exciton transfer in a disordered system

Here, we present a perturbation treatment for the energy-
transfer rate in a disordered system and quantify � j���. In the
presence of disorder of the QD sizes, the energy mismatch
between the initial and final levels can be significant, requir-
ing phonon-assisted energy transfer. We assume that the
magnitude of the disorder energy is smaller than the Debye
energy of the acoustic phonons. The role of the LO-phonons
is restricted here because of the discrete nature of the QD
levels. The electron-phonon interaction due to a deformation
potential is given by

He-ph = �
�,r�,s,q

exp�iq · r��V�sa�r�
† a�r�

�bq + b−q
† � , �52�

where q= �q� ,V�s=�s,�D�!�q ,!�q= �	q /2�Mc�
�1/2, c� is the
sound velocity of the longitudinal phonons, D� is the
deformation-potential coefficient in the conduction ��=c�
and the valence ��=v� band, rc=re ,rv=rh, �M is the mass
density, 
 is the sample volume, and bq

†�bq� creates �de-
stroys� a phonon of mode s �suppressed� with a wave vector
q and energy 	�sq=	csq in the Debye approximation. Here,
we distinguish the phonon frequency �sq from the photon
frequency ��k introduced earlier. The piezoelectric contribu-
tion is obtained in Eq. �52� by replacing V�s by Vs

pz

=eh14Bs�q�!sq /q
Ds
pz�q�!sq, where e ,h14 are electronic

charge, piezoelectric constant, and B�=3 sin2 � cos � /�2,Bt
=sin ��8 cos4 �+sin4 ��1/2 /2 and summing over the longitu-
dinal �s=�� and the transverse �s= t� modes for an axially
symmetric system around the z axis.17 Here, � is the polar
angle of q. The piezoelectric contribution to � j��� turns out
to be small as will be shown later.

Using Eqs. �1� and �52�, we find

�j��He-ph
j �j� = eiq·rj�

q
Vjj��q��bq + b−q

† � , �53�

where

Vjj��q� =� d3red
3rhFj�

� �re,rh�Fj�re,rh��Vcse
iq·re − Vvse

iq·rh	 ,

�54�

and the parameters j , j� denote intradot levels in jth QD.
Note that Vjj��q� becomes very small for q�1 /R, where R is
the QD size, severely restricting the available phonons to
small number of low-energy phonons for a large QD.

A two-step transfer-matrix element for exciton transfer
between the ground states �j� and �j�� via emission �upper
sign� and absorption �lower sign� of a phonon of wave vector
q is given by

�j��H��j� = � eiq·rjVjj�q�
− � j j� − i� j�� j��

+
eiq·rj�Vj�j��q�

� j j� − i� j��� j�
�

H j,j��nq +
1

2
�

1

2
, �55�

where � j =� j��	��q and nq is the Boson factor. The damp-
ing parameters are inserted to avoid divergences at � j j�=0. In
the above expression, the exciton-phonon interaction takes

place at jth �j�th� QD for the term proportional to Vj�Vj��
followed �preceded� by exciton transfer through dipolar or
photon-exchange coupling. For the photon-exchange interac-
tion H j,j�=Tj,j�, the photon energy equals � j� �� j� for the first
�second� term in Eq. �55�. The effect of this small energy
difference �� gap energy� is negligible for Tj,j� in Eq. �9�.

The transition rate is then given by

Wj,j� =
2� �Heff�r��2

	
�
q,�
� �Vjj�q��2

� j j�
2 + � j�� j��

2
+

�Vj�j��q��2

� j j�
2 + � j��� j�2

+ � eiq·rj j�Vjj�q�Vj�j��q��

�− � j j� − i� j�� j��	�� j j� + i� j��� j�	
+ c.c.�

�nq +
1

2
�

1

2��� j − � j� � 	�q� , �56�

where  is inserted as discussed earlier for overlapping poles.
The first two terms above are identical to the bubble contri-
butions in Eq. �39� if we identify

� j���� = ��
�,q

�Vj�j��q��2�nq +
1

2
�

1

2
��� − � j� � 	�q� ,

�57�

and the last cross term represents the contribution from a
one-rung diagram. This term represents an interference be-
tween the two terms in Eq. �55�.

A coherent interference can even quench the energy trans-
fer. This situation occurs at a short distance qrjj��1 for a
large energy mismatch �� j j���� j ,� j� and for similar QDs
with Vjj �Vj�j�: these conditions yield �j��H��j�=0 in Eq.
�55� and thereby a vanishing rate. This effect was pointed out
earlier18 and is absent in the spectral overlap treatment.7,15

On the other hand, the interference term becomes negligible
in the limit rjj��R. This can be shown qualitatively by not-
ing that �1� small q�1 /R values give a negligible rate due to
small electron-phonon coupling strengths and small phonon
density of states; and �2� the integrand eiq·rj j� for the angular
integration oscillates rapidly when rjj� is much larger than
the QD size. For example, for a spherical QD, Vjj�q� de-
pends only on q, yielding

�
0

�

sin �eiq·rj j�d� =
2 sin�qrjj��

qrjj�
,

which vanishes for qrjj��rjj� /R→�.
We have shown that the nonresonant energy-transfer

rate depends on � j���. In order to gain a qualitative
understanding of this quantity, we study � j��� briefly
in the following by using a parabolic potential19 V�re ,rh�
=me�

2re
2 /2+mh�

2rh
2 /2 for the exciton confinement. Here,

me�mh� is the effective mass of the electron �hole�. The po-
tential V�re ,rh�=M�2rcm

2 /2+��2r2 /2 is then separable into
the relative coordinate r=re−rh and the center-of-mass co-
ordinate rcm="ere+"hrh, where "e=me /M ,"h=mh /M, and
M =me+mh, yielding19
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F�re,rh� =
1

���R�3/2exp�−
rcm

2

2R2�#�r� , �58�

where R=�	 /M� and # is the solution of

�−
	2�2

2� � r2 +
1

2
��2r2 −

e2

�r
�# = �# �59�

and � is the reduced mass. While a desirable variational
function is of the form #�exp�−r2 /2a2−ur� where a ,u are
variational parameters, we employ #=exp�−r2 /2a2� /
���a�3/2 for simplicity, assuming that the QD size is
smaller than the Bohr radius aB=�	2 /�e2�17.7 nm
for GaAs and thus treating the Coulomb energy as a
perturbation. The variational ground state is then given by
a2��1–2a� / �3��aB�	a�

2 in the limit a� /aB�3�� /4, where
a�= �	 /���1/2. We then find from Eq. �54�,

Vjj�q� = exp�− R2q2/4��Vc exp�− a2"h
2q2/4�

− Vv exp�− a2"e
2q2/4�	 . �60�

The deformation-potential contribution is given by

� j
df��� =

q��
3

4��Mc�
2 exp�− R2q��

2 /2�

�Dce
−a2"h

2q��
2 /4 − Dve−a2"e

2q��
2 /4�2�nq��

+ ��� − � j�	 ,

�61�

where the phonon energy 	c�q�� equals the energy mismatch
��−� j� and ���� is the unit step function. Similarly, the pi-
ezoelectric contribution equals

� j
pz��� = �

s

qs�
3 �Ds

pz�q�2��
4��Mcs

2 exp�− R2qs�
2 /2�

�e−a2"h
2qs�

2 /4 − e−a2"e
2qs�

2 /4�2�nqs�
+ ��� − � j�	 ,

�62�

where 	csqs�
��−� j� and � �� denotes the angular average
over the polar angle �: �D�

pz�q�2�= �12 /35��eh14 /qs��2 and
�Dt

pz�q�2�= �163 /560��eh14 /qs��2.
For a numerical evaluation of � j���=� j

df���+� j
pz���, we

use me=0.067m0 ,mh=0.09m0 �Ref. 19� and two different ef-

fective QD radii: a�=3 nm and a�=10 nm, where m0 is the
free-electron mass. We also employ Dc=−6.5 eV, Dv
=3.1 eV,9 �M =5.3 g /cm3, c�=5.14 cm /s, ct=3.04 cm /s,
and h14=1.2107 V /cm relevant for GaAs.17 The result is
displayed in Fig. 3 for several temperatures for a small QD
with a�=3 nm in Fig. 3�a� and for a larger QD with a�

=10 nm in Fig. 3�b�. The contribution from piezoelectric
scattering is very small �� a few percent�. There is a severe
asymmetry for � j��� between the positive �Stokes transfer�
and negative �anti-Stokes transfer� values of the energy mis-
match �−� j at low temperatures. At high temperatures, � j���
becomes a more symmetric function of the energy mismatch
and becomes linear in T for kBT� ��−� j�. For small ��−� j�,
� j��� rises as � j���� ��−� j�3 and drops after reaching a peak
on both sides, due to the cutoff values of q�1 /a �which is
more severe than q�1 /R� arising from phonon momentum
conservation in Eq. �60�. Also, a greater number of phonon
modes q with larger energies can interact with smaller QDs,
explaining the fact that the magnitude and the energy width
as well as the Stokes-anti-Stokes asymmetry is much larger
for the smaller QD in Fig. 3�a� than in Fig. 3�b�.

The two-site energy-transfer rate is calculated from Eq.
�39� for  =1 using � j��� given in Fig. 3 and is displayed in
Fig. 4 for several temperature for small QDs with a�

=3 nm in Fig. 4�a� and for much larger QDs with a�

=10 nm in Fig. 4�b�. The total transfer rate is the product of
these spectral rates and the range-dependent part given by
the square of the dimensionless coupling strength in Fig.
4�c�. In Fig. 4, the quantity �R on the vertical axes in Figs.
4�a� and 4�b� cancels �R on the vertical axes in Fig. 4�c� and
thus may be considered as an arbitrary scaling parameter. It
is seen there that spectral transfer takes place more effi-
ciently over a larger energy mismatch between smaller QDs
for the same reason as explained above for damping � j���.
However, the spectral transfer rate for the smaller QDs in
Fig. 4�a� is about the same as the rate in Fig. 4�b�. The reason
behind this surprising result can be seen from Fig. 3. Here,
the energy scale of the horizontal axis is not much greater
than that of the � axis, indicating that the two poles are
overlapping and the approximation leading Eq. �31� to the
simple convenient result in Eq. �39� is not accurate in the
present case.

FIG. 3. Damping � j���
=� j

dc���+� j
pz��� from one-

phonon-assisted transitions calcu-
lated from Eqs. �61� and �62� for
�a� a small QD with a�=3 nm
and �b� a large QD with a�

=10 nm as a function of the en-
ergy mismatch �−� j for several
temperatures. The positive �nega-
tive� value of �−� j corresponds
to Stokes �anti-Stokes� transfer.
Other parameters are given in the
text.
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Therefore, we evaluate the two-site transfer rate in Eq.
�31� directly. For this purpose, we define � j���
���−� j�
and rewrite Eq. �31� as

Wjj� = �Heff�r�

	�R
−1 �22	�R

−2

�

�
−�

�

e−�� ����
�2 + ����2

��� + � j j��

�� + � j j��
2 + ��� + � j j��

2d� .

�63�

The spectral part of the rate, namely, the quantity that fol-
lows the first dimensionless factor �Heff�r� /	�R

−1	2, is evalu-
ated using ���� given in Fig. 3 and is plotted in Fig. 5 for
several temperature for small QDs with a�=3 nm in Fig.
5�a� and for much larger QDs with a�=10 nm in Fig. 5�b�.
The total transfer rate is the product of these spectral rates
and the range-dependent part given by the square of the di-

mensionless coupling strength in Fig. 4�c�. Again, the quan-
tity �R on the vertical axes in Figs. 5�a� and 5�b� cancels �R
on the vertical axes in Fig. 4�c� as seen in Eq. �63� and thus
may be considered as an arbitrary scaling parameter. The
results in Fig. 5 are similar to those displayed in Figs. 4�a�
and 4�b� except that they are reduced roughly by a factor of
2 in magnitudes. As mentioned earlier, this factor arises from
the double counting of the contributions from the poles at
�=� j and �=� j� in Eqs. �37� and �39� when they are close
together within the damping width. This correction amounts
to setting  �1 /2. The energy widths are somewhat larger in
Fig. 5 than in Fig. 4.

C. Spectral transfer in a disordered multi-QD system

In general, there is some disorder in the size of QDs in a
multidot system, giving rise to inhomogeneous broadening
of the energy levels. To simplify the problem at this point,
we assume that the only relevant disordered quantities are

FIG. 4. The spectral part of the two-site
energy-transfer rate in units of ns /�R

2 calculated
from the approximate expression in Eq. �39� for
 =1 as a function of the energy mismatch for �a�
small QDs with a�=3 nm and �b� much larger
QDs with a�=10 nm. The positive �negative�
value of the energy mismatch corresponds to
Stokes �anti-Stokes� transfer. The total rate is the
product of these spectral rates and the range-
dependent part given by the square of the dimen-
sionless coupling strength in �c�. Other param-
eters are given in the text.

FIG. 5. The spectral part of the two-site
energy-transfer rate in units of ns /�R

2 calculated
from the full expression in Eq. �31� and �63� as a
function of the energy mismatch for �a� small
QDs with a�=3 nm and �b� much larger QDs
with a�=10 nm. The positive �negative� value of
the energy mismatch corresponds to Stokes �anti-
Stokes� transfer. The total rate is the product of
these spectral rates and the range-dependent part
given by the square of the dimensionless cou-
pling strength in Fig. 4�c�. Other parameters are
given in the text.
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the positions and the energy levels of the QDs, neglecting the
disorder in the quantities such as D j ,� jR, and use the same
QD radius for � j��� and � j���� in Eqs. �61� and �62�. The
density of states of the levels � j of the system is given by
�QDg�� j� where g�� j� is the normalized inhomogeneous spec-
tral line shape. The transition rate is still given by Eq. �46�
except that An�� j −� j�� is a function of the energy mismatch.
The coefficient A2 is given from Eqs. �29�, �46�, and �63� by

A2�� j − � j�� =
9�2�pht

32

	�R
−2

�
�

−�

�

e−�� ����
�2 + ����2


��� + � j j��

�� + � j j��
2 + ��� + � j j��

2d� , �64�

where � j���
���−� j� is the sum of the contributions in
Eqs. �61� and �62�. A similar expression is obtained for
A6�� j −� j��=A2�� j −� j���Jeff /Teff�2r4, yielding

A6�� j − � j�� = A2�� j − � j���
4�2�/��2/� �65�

in view of Eq. �30�.
An experimentally measurable quantity in the time-

resolved optical spectroscopy is the total rate Wn��� with
which the initial spectral intensity excited at � decays in
time. The total spectral transfer rate from the jth QD to all
other QDs equals

Wn�� j� = �
j�

Wjj�

= �QD� d� j�g�� j��4��
rmin

�

r2dr
e−r/�n

rn An�� j − � j�� ,

�66�

where �6=� and �2 is the lesser of the sample size and the
photon mean-free path given by20

�2���−1 =
�

2
	�QDkg

−2g���/�R. �67�

For the GaAs parameters, �QD=1015 /cm3,�R=0.310−9 s,
and g���=0.05 /meV, we estimate �2=0.46 cm. For resonant
transitions on a QD lattice, however, we take g�����R /	,
obtaining �2�5.1103 Å, assuming a purely radiative line-
width at low temperatures. The quantity �2 equals �2�� j�
��2�� j��	 when the phonon is emitted at j�th �jth� QD al-
though A2�� j −� j�� does not depend on the photon energy in
view of the fact that the photon-exchange interaction I�rjj��
in Eq. �32� is nearly insensitive to a small photon-energy
difference �� j j���Eg. To put this more explicitly, we rewrite
Eq. �66� as

Wn�� j� = 2��QD� d� j�g�� j���
rmin

�

r2−ndr

�exp�−
r

�n�� j�
� + exp�−

r

�n�� j��
�An�� j − � j�� .

�68�

For n=6, we find

W6�� j� =
4��QD

3rmin
3 � g�� j��A6�� j − � j��d� j�. �69�

Assuming rmin��2�sample size, we obtain for n=2

W2�� j� = 2��QD� d� j�g�� j����2�� j� + �2�� j��	A2�� j − � j�� ,

�70�

or using Eq. �67�,

W2�� j� = 2�� d� j���QDg�� j���2�� j� +
2kg

2�R

�	
A2�� j − � j�� .

�71�

Remarkably, this quantity is independent of the QD density
unlike W6�� j� in Eq. �69�, which is proportional to �QD

2 in
view of rmin

3 ��QD
−1 . This general result follows from the fact

that photons can travel over a long distance until it is cap-
tured eventually in a macroscopic system.

The numerical results in Figs. 4 and 5 indicate that the
transfer rate �An�� j −� j�� becomes small for �� j −� j�� much
larger than a few meV. Typically g��� has a much larger
width than this energy width of An���. Therefore, we ap-
proximate g�� j���g�� j� ,�2�� j����2�� j� in Eqs. �69� and
�70�, obtaining

W2�� j�
W6�� j�

�
3rmin

3 �2�� j�� A2�� j − � j��d� j�

� A6�� j − � j��d� j�

=
3

4
���

�
�2

rmin
3 �2�� j�/�4, �72�

in view of Eq. �50�. This ratio W2 /W6�5.5104 is very
large for �=1,�2=0.46 cm, rmin=300 Å and for the param-
eters relevant to GaAs QD. In this approximation, Eq. �71�
can be rewritten as

W2�� j� = 8kg
2	−1�R� A2�� j − � j��d� j�. �73�

Inserting Eq. �64� in Eq. �73�, we obtain

W2�� j� = �R
−19�pht

4�
G0���G0�0�:

Gn��� 
 �
−�

�

e−�� �n����
�2 + ����2d� . �74�

Note that this result is independent of � j because we
have neglected the variation in g��� within the energy range
of effective energy transfer near �=� j. A first-order correc-
tion �W2�� j� to W2�� j� can be made by expanding g�� j��
�g�� j�−� j j�g�� j� in Eq. �71�, yielding
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�W2�� j�
W2�� j�

= −
g�� j��
g�� j�

f�: f� =
1

2
�G1�0�

G0�0�
−

G1���
G0��� ,

�75�

where g�� j��=dg�� j� /d� j. The quantities W2�� j� and f� are
plotted in Fig. 6 as a function of the effective QD radius a�

for several temperatures. The 100 K �dashed-dotted� curve in
Fig. 6�a� crosses over the other lower-temperature curves as
a� is decreased below 15 Å, because ���� in the denomina-

tor in Eq. �74� becomes large for a small a� at high tempera-
tures. As expected, this crossover sets in at a larger a� at a
higher temperature T=300 K �dashed-double-dotted curve�.

For a Gaussian line shape,

g��� =
1

�2��
exp�−

�2

2�2� , �76�

where the full width at half maximum equals Wfw�1.96�,
we find g� /g=−� /�2 and

�W2�� j�
W2�� j�

=
� j f�
�2 .

For the energy �� j��� away from the tails of the distribution,
the fractional correction in the above expression is small if �
is much larger than a few meV according to the result in Fig.
6�b�.

We can calculate the full expression for W2�� j� in Eq. �71�
numerically for a general distribution g�� j�. For a Gaussian
distribution, we insert Eq. �76� in Eq. �71� and find

W2�� j� = 4kg
2	−1�R�

−�

�

�1 + exp�− ��2 − 2� j��/2�2	�A2���d� .

�77�

Inserting Eq. �64� in Eq. �77�, we obtain

W2�� j� =
9�pht

8�
�R

−1�
−�

�

d���
−�

�

d�e−�� ����
�2 + ����2


��� + ���

�� + ���2 + ��� + ���2

�1 + exp�− ���2 − 2� j���/2�2	� . �78�

This expression reduces naturally to that in Eq. �74� for a
smooth g��� with �→�.

Figure 7 displays the spectral decay rate W2�� j� calculated
from Eq. �78� as a function of the energy � j for several
temperatures for small QDs with an effective radius a�

=3 nm for Fig. 7�a� �=5 meV and Fig. 7�b� �=10 meV.
Note that the energy dependence of the decay rate is very
different for the two cases. In Fig. 7�a� with a narrow distri-
bution width �, the rate is very asymmetric at low tempera-

FIG. 6. �a� The total photon-exchange decay rate of the line
intensity W2�� j� in Eq. �74� in units of �R

−1 for a flat spectral density
g�� j� as a function of the effective QD radius a� for several tem-
peratures. W2�� j� is independent of the energy � j. �b� First-order
correction factor f� in Eq. �75� in units of meV for g�� j� slowly
varying in � j.

FIG. 7. The total photon-
exchange decay rate of the line in-
tensity W2�� j� in Eq. �78� for
small QDs with an effective radius
a�=3 nm in units of �R

−1 for a
Gaussian spectral density in Eq.
�76� as a function of the energy � j

for several temperatures. The
Gaussian function is narrow in �a�
�=5 meV and broad in �b� �
=10 meV. Other parameters are
given in the text.
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tures, owing to the fact that it is easier to shift down in
energy via phonon emission than to move up in energy
through phonon absorption. This asymmetry is still some-
what visible as the rate becomes more symmetric at higher
temperatures. In this case, however, the rate at the center of
the distribution � j =0 is much smaller than that at the wings
because the mean-free path �2�� j��1 /g�� j� in the second
term of Eq. �71� is small due to the large density of states
g�� j�. The energy dependence of W2�� j� is much weaker for
a much broader distribution in Fig. 7�b� as shown in Eqs.
�74� and �75�.

Figure 8 shows exactly the same plot for W2�� j� as in Fig.
7 except that the effective QD radius is now increased to
a�=10 nm from a�=3 nm. As shown in Fig. 5, the energy
range of exciton hopping becomes smaller for larger QDs
due to the scaling q�1 /a� �cf. Eq. �60�	 of the maximum
available phonon wave number. Therefore, even a narrow
width 2�=10 meV of the distribution in Fig. 8�a� is rela-
tively larger than the energy width of effective energy trans-
fer �4 meV in Fig. 5, yielding roughly the � j-independent
result for W2�� j� shown in Eq. �74� approximately. These
results apply even better to the wider distribution in Fig.
8�b�, where the curves are flat at all temperatures, while the
narrower distribution in Fig. 8�a� shows some curvature de-
viating somewhat from the predictions in Eq. �74�.

As mentioned earlier, the total decay rate W2�� j� via
photon-exchange energy transfer is independent of the QD
density �QD for a macroscopic sample, while W6�� j���QD

2 .
When the distribution g�� j� is very broad, W2�� j� is indepen-
dent of the energy � j as discussed above. However, this is not
true for the dipolar rate W6�� j�. In this case, the dependence
of the total rate on � j is very different as can be shown from
Eqs. �67� and �72�,

W6�� j� �
2�	�QD

3�R�rmin
3 � �

�kg
3�2

g�� j�W2�� j� � �QD
2 g�� j� .

�79�

Namely, the total transfer rate W6�� j� is proportional to �QD
2

and g�� j� in contrast to W2�� j�.

IV. SUMMARY AND CONCLUDING REMARKS

A field-theoretic formalism was presented for resonant
and nonresonant spectral and spatial energy transfer of exci-
tons in semiconductor multi-quantum-dot structures employ-
ing dipole-dipole and photon-exchange interactions. While
applications were made for energy transfer between the
ground exciton states, the formalism is general for transfer
from a given state of an initial jth QD to another state in the
final j�th QD. This situation becomes important when there
are states within a thermal reach from the ground state inside
the QDs. We also neglected the distribution of the QD sizes
except for generating a distribution of the energy levels. The
applications can readily be generalized by employing differ-
ent expressions for the quantities such as the form factor
Fj�k� in Eq. �5� and the damping parameter � j��� for differ-
ent sites, accounting properly for the relevant exciton state
and the QD radius. In this case, the thermal weighting factor
exp�−���−� j�	 in Eq. �31� represents a thermal average over
these initial intradot states as discussed earlier. The photon-
exchange coupling was calculated between two QDs and was
shown to have a r−1 range dependence in contrast to the r−3

range dependence of the dipolar interaction. These character-
istic radial dependences are general for multilevel QD struc-
tures and lead to the dominance of the photon-exchange
transfer for the spatial diffusion of excitons over a macro-
scopic sample and the total spectral transfer rate owing to the
long photon mean-free path, a central conclusion of this pa-
per. While dipolar interaction is much stronger than the
photon-exchange interaction at short and intermediate dis-
tances, the magnitude of the latter dominates the strength of
the former roughly beyond r$� ��353 Å, for example, in
GaAs� as shown in Fig. 1.

Resonant transfer rates were calculated as a function of
the distance between two QDs and are displayed in Fig. 1 at
zero temperature. They can be orders of magnitude greater
than the phonon-assisted nonresonant rates shown in Figs. 4
and 5, indicating that the resonant process dominates the
exciton diffusion constant except at very high temperatures,
where the resonant transfer rate slows down severely due to
a very short coherence time �G arising from the intradot ver-
tical phonon-assisted transitions to the nearby excited states
as discussed earlier. In contrast, nonresonant rates increase

FIG. 8. The total photon-
exchange decay rate of the line in-
tensity W2�� j� in Eq. �78� for large
QDs with an effective radius a�

=10 nm in units of �R
−1 for a

Gaussian spectral density in Eq.
�76� as a function of the energy � j

for several temperatures. The
Gaussian function is narrow in �a�
�=5 meV and broad in �b� �
=10 meV. Other parameters are
given in the text.
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rapidly with the temperature as seen from Figs. 4–8 and can
become more important at high temperatures. In order to
assess the diffusion constant through resonant transfer, we
considered random successive resonant transfer on a regular
QD lattice. This model was solved exactly for the diffusion
constant. The results are given in Eqs. �48� and �49�. We
showed, in a regular lattice, that slow but long jumps via
photon-exchange coupling yield a much larger diffusion con-
stant than the fast short jumps through dipolar coupling. The
advantage of photon-exchange transfer was shown to lie in
its long-range radial dependence, which allows excitons to
find resonant sites even in a disordered system. Since long-
range photon-exchange energy transfer is insensitive to the
spectral and spatial disorder, the lattice model is expected to
yield a rough estimate of the diffusion constant for a random
system for the radiative transfer. For short-range dipolar
transfer, however, the lattice model may greatly overestimate
the diffusion constant because the diffusion process here is
bottlenecked in the percolation chain by slow jumps between
resonant pairs of nearest neighbors which happen to have
large spatial separations.

For nonresonant transfer, we calculated two-site phonon-
assisted energy-transfer rates as a function of the energy mis-
match, the spatial separation, the QD radius, and the tem-
perature. The transfer rates and the maximum range of the
energy mismatch for efficient transfer were found to be
greater for smaller QDs and higher temperatures. Exciton
transfer proceeds through incoherent phonon-assisted hop-
ping between QDs. A full expression for two-site resonant
and nonresonant transfer rates is given in Eqs. �31� and �63�.
The interference term introduced in Eq. �56�, which corre-
sponds to the one-rung diagram in Fig. 2�b�, reduces the net
rate at a close distance r�q−1 between the QDs as discussed
earlier, where q is the resonance phonon wave number. The
interference term was shown to vanish at a long distance in
the opposite regime. The spectral part of the two-site transfer
rate calculated from Eq. �63� is displayed in Fig. 5 as a
function of the energy mismatch. The results there show that
spectral transfer occurs most efficiently for small QDs and
over several meV’s. The total range-dependent transfer rate
at r is given by the product of the rates in Fig. 5 and the
dimensionless r-dependent quantity in Fig. 4�c�. It is impor-
tant to point out here that the results presented in Eqs. �63�
and �74�–�78� and the concomitant numerical results dis-
played in Figs. 4–8 are based on the assumption that the QD
sizes are not significantly different while there is a distribu-
tion in their energy levels, which is a reasonable assumption
for typical self-assembled QDs. If there is a significant dif-
ference between the sizes of the initial �j� and final �j�� QDs,
then distinct � j��� and � j���� should be used for the two sets
of �’s �with different arguments� appearing in the above
mentioned equations. In this case, the larger QD will control
the exciton-phonon interaction through Eq. �60�.

We also proposed that the energy-transfer mechanism can
be experimentally studied from the time-dependent decay

rate of the initial intensity at a given energy � j excited by a
sharp laser pulse in a disordered system. This decay rate is
the total-energy-transfer rate Wn�� j� from the sites with the
energy � j to all other sites and was studied as a function of
� j, the QD radius, the width of the inhomogeneous distribu-
tion of the QD levels, and the temperature. A general expres-
sion for this rate is given in Eq. �69� for the dipolar rate
W6�� j� and in Eq. �71� for the photon-exchange rate W2�� j�.
The latter is independent of the QD density �QD in a macro-
scopic sample and W6�� j� is quadratic in �QD. The total spec-
tral transfer rate is again dominated by the weak long-range
photon-exchange interaction mechanism over the standard
short-range Förster mechanism for a macroscopic sample
�i.e., W2�� j��W6�� j�	. In a system with a slowly varying
spectral density of states, W2�� j� is independent of � j for the
photon-exchange transfer, while W6�� j� is linear in the line-
shape function g�� j� for the dipolar rate. The quantity W2�� j�
is given by Eq. �74� for a flat spectral density and is dis-
played in Fig. 6. This rate is greater for smaller QDs and
higher temperatures except for a system with very small
QDs, where the rate can decrease for decreasing QD radius
at high temperatures as shown by the dashed-double-dotted
curve in Fig. 6 at 300 K as discussed earlier. For a Gaussian
spectral density of states in Eq. �76�, the total spectral decay
rate W2�� j� is given by Eq. �78� and is displayed in Fig. 7 for
a system with small QDs and in Fig. 8 for a system with
large QDs. The � j dependence of W2�� j� was studied as a
function of the temperature and the width of the distribution
of the QD levels. A sensitive � j dependence of W2�� j� was
found for a system with small QDs with a narrow inhomo-
geneous distribution of the levels as shown in Fig. 7�a�. The
rate is greater for smaller QDs and higher temperatures ex-
cept for very small QDs at high temperatures.

A complete time-dependent solution for the spectral and
spatial transport in a system with a random spatial distribu-
tion of QDs and a spectral distribution of the exciton levels
arising from the fluctuating dot sizes requires a full Monte
Carlo simulation, starting with a rate equation based on the
basic two-site QD-QD transfer rates obtained in this paper.
Photons can escape from the sample either through a spatial
diffusion to the surface of the sample or through a spectral
diffusion to the wings of the distribution. At the wings of the
distribution g���, the photon mean-free path �2��� becomes
eventually larger than the sample size according to Eq. �67�,
allowing the photons with this energy leak out ballistically. A
full treatment of this complex problem will be reserved for a
future study.
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